A Review of Wastewater Treatment by Reverse Osmosis
Michael E. Williams, Ph.D., P.E.

Since the development of the first practical cellulose acetate membranes in the early 1960's and the subsequent development of thin-film, composite membranes, the uses of reverse osmosis have expanded to include not only the traditional desalination process but also a wide variety of wastewater treatment applications. Several advantages of the RO process that make it particularly attractive for dilute aqueous wastewater treatment include: (1) RO systems are simple to design and operate, have low maintenance requirements, and are modular in nature, making expansion of the systems easy; (2) both inorganic and organic pollutants can be removed simultaneously by RO membrane processes; (3) RO systems allow recovery/recycle of waste process streams with no effect on the material being recovered; (4) RO membrane systems often require less energy and offer lower capital and operating costs than many conventional treatment systems; and (5) RO processes can considerably reduce the volume of waste streams so that these can be treated more efficiently and cost effectively by other processes such as incineration (Cartwright, 1985; Sinisgalli and McNutt, 1986; Cartwright, 1990; McCray et al., 1990; Cartwright, 1991; Williams et al., 1992). In addition, RO systems can replace or be used in conjunction with others treatment processes such as oxidation, adsorption, stripping, or biological treatment (as well as many others) to produce a high quality product water that can be reused or discharged.

Applications that have been reported for RO processes include the treatment of organic containing wastewater, wastewater from electroplating and metal finishing, pulp and paper, mining and petrochemical, textile, and food processing industries, radioactive wastewater, municipal wastewater, and contaminated groundwater (Slater et al., 1983a; Cartwright, 1985; Ghabris et al, 1989; Williams et al., 1992). Table 1 lists RO and nanofiltration applications along with selected references. A review of RO and nanofiltration wastewater treatment follows; a thorough discussion of the application of RO membranes to seawater and brackish water desalination can be found in Williams et al. (1992).

RO Separation of Organic Pollutants from Wastewater

Many studies have been performed on the separation of organics and organic pollutants by RO membranes, and these studies have identified some of the unique aspects associated with organic separation. Sourirajan (1970) and Sourirajan and Matsuura (1985) have compiled separation and flux data of cellulose acetate membranes for a large number of organic compounds, including many organic pollutants. They found that organic separation can vary widely (from <0% to 100%) depending on the characteristics of the organic (polarity, size, charge, etc.) and operating conditions (such as feed pH, operating pressure, etc.). In an early study, Anderson et al. (1972) reported some of the factors influencing separation of several different organics (including acetone, urea, phenol, 2,4-dichlorophenol, nitrobenzene) by cellulose acetate membranes. Rejections varied considerably for the different solutes, and rejections of ionizable organics were greatly dependent on degree of dissociation; nonionized and hydrophobic solutes were found to be strongly sorbed by the membranes and exhibited poor rejection. Duvel and Helfgott (1975) also found organic separations varied with molecular size and branching; they postulated organic separation was also a function of the solute's potential to form hydrogen bonds with the membrane.
Table 1. Selected Wastewater Applications of Reverse Osmosis.

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Osmosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seawater, Brackish Water Desalination</td>
<td>Various Salt Species</td>
<td>Williams et al. (1992)</td>
</tr>
<tr>
<td>Organic Pollutants Removal</td>
<td>Various organics</td>
<td>Sourirajan (1970); Anderson et al. (1972);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shuckrow et al. (1981); Kurihara et al. (1981);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lynch et al. (1984); Sourirajan and Matsuura</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1985); Pusch et al. (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edwards and Schubert (1974); Chian et al. (1975)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fang and Chian (1976); Koyama et al. (1982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koyama et al. (1984); Bhattacharyya et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1987); Bhattacharyya and Madadi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhattacharyya and Williams (1992a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McNulty et al. (1977); Spatz (1979); Robison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1983)</td>
</tr>
</tbody>
</table>
Table 1. Selected Wastewater Applications of Reverse Osmosis (continued).

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroplating and Metal-finishing Rinse Water Treatment</td>
<td>Nickel, chromium, gold</td>
<td>Imasu (1985)</td>
</tr>
<tr>
<td></td>
<td>Aluminum, phosphoric acid</td>
<td>Thorsen (1985)</td>
</tr>
<tr>
<td></td>
<td>Various metals</td>
<td>Davis et al. (1987)</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Slater et al. (1987a)</td>
</tr>
<tr>
<td>Pulp and Paper Processing Effluent Treatment</td>
<td>Spent sulphite liquor components</td>
<td>Glimenius (1980); Olsen (1980); Paulson and Spatz (1983); Jönsson and Wimmerstedt (1985)</td>
</tr>
<tr>
<td></td>
<td>Wash water components</td>
<td>Hart and Squires (1985)</td>
</tr>
<tr>
<td></td>
<td>Bleach plant compounds</td>
<td>Dorica et al. (1986); Simpson and Groves (1983); Jönsson and Wimmerstedt (1985); Ekengren et al. (1991)</td>
</tr>
<tr>
<td>Food Processing Effluent Treatment</td>
<td>Meat processing COD</td>
<td>Hart and Squires (1985); Gekas et al. (1985)</td>
</tr>
<tr>
<td></td>
<td>Olive mills COD, TDS</td>
<td>Canepa et al. (1988); Anonymous (1988a)</td>
</tr>
<tr>
<td></td>
<td>Various contaminants</td>
<td>Mohr et al. (1989)</td>
</tr>
</tbody>
</table>
Table 1. Selected Wastewater Applications of Reverse Osmosis (continued).

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive Processing Effluent</td>
<td>Radionuclides</td>
<td>Ebra et al. (1987)</td>
</tr>
<tr>
<td>Treatment</td>
<td>Uranium conversion process effluent</td>
<td>Hsiue et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>Various uranium species</td>
<td>Chu et al. (1990); Garret (1990)</td>
</tr>
<tr>
<td></td>
<td>Uranium nitrate</td>
<td>Prabhakar et al. (1992)</td>
</tr>
<tr>
<td>Other Wastewater Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast-Furnace Scrubber Water</td>
<td>TDS</td>
<td>Terril and Neufeld (1983)</td>
</tr>
<tr>
<td>Coal Mining Drainage</td>
<td>TDS</td>
<td>Hart and Squires (1985)</td>
</tr>
<tr>
<td>Cooling Tower Blowdown</td>
<td>TDS</td>
<td>Schutte et al. (1987); Bryant et al. (1987)</td>
</tr>
<tr>
<td>Fuel Processing Wastewaters</td>
<td>TDS, COD, organics</td>
<td>Bhattacharyya et al. (1984); Siler and Bhattacharyya (1985); McCray and Ray (1987); Krug and Attard (1990)</td>
</tr>
<tr>
<td>Evaporator Condensates</td>
<td>TOC</td>
<td>Lyandres et al. (1989)</td>
</tr>
<tr>
<td>Ammonium Nitrate/Explosive Manufacturing Wastewater</td>
<td>Ammonium nitrate</td>
<td>Hays et al. (1988); Davis et al. (1990)</td>
</tr>
</tbody>
</table>
Table 1. Selected Wastewater Applications of Reverse Osmosis (continued).

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile Dyehouse Effluents</td>
<td>Color, organics, TDS</td>
<td>Treffry-Goatly et al. (1983); Slater et al. (1987b); Calabro et al. (1990); Gaeta and Fedele (1991)</td>
</tr>
<tr>
<td>Contaminated Water Supply Treatment</td>
<td>Leachates</td>
<td>Chian and De Walle</td>
</tr>
<tr>
<td></td>
<td>TOC</td>
<td>Slater et al. (1983b)</td>
</tr>
<tr>
<td></td>
<td>TDS, COD</td>
<td>Kinman and Nutini (1990)</td>
</tr>
<tr>
<td></td>
<td>Alkalinity, COD, TDS, NH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavy metals, organics, TOC</td>
<td>Bhattacharyya and Kothari (1991)</td>
</tr>
<tr>
<td></td>
<td>TOC, nitrate, metals</td>
<td>Stürken et al. (1991)</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>Agricultural chemicals</td>
<td>Chian et al. (1975); Johnston and Lim (1978); Regunathan et al. (1983); Baier et al. (1987); Fronk (1987)</td>
</tr>
<tr>
<td></td>
<td>Humic, fulvic materials</td>
<td>Nusbaum and Riedinger (1980); Odegaard and Koottatep (1982); Bhattacharyya and Williams (1992a)</td>
</tr>
<tr>
<td></td>
<td>Radium, various contaminants, color</td>
<td>Sorg et al. (1980); Sorg and Love (1984); Taylor et al. (1987); Tan and Sudak (1992)</td>
</tr>
</tbody>
</table>
Table 1. Selected Wastewater Applications of Reverse Osmosis (continued).

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal</td>
<td>TDS, organics, Wastewater</td>
<td>Cruver (1976); Fang and Chian (1976); Lim and Johnston (1976); Tsuge and Mori (1977)</td>
</tr>
<tr>
<td></td>
<td>TDS, TOC</td>
<td>Stenstrom et al. (1982)</td>
</tr>
<tr>
<td></td>
<td>TDS, organics (at Water Factory 21)</td>
<td>Richardson and Argo (1977); Allen and Elser (1979); Argo and Montes (1979); Nusbaum and Argo (1984); Reinhard et al. (1986)</td>
</tr>
<tr>
<td></td>
<td>TDS, TOC, fecal coliform</td>
<td>Suzuki and Minami (1991)</td>
</tr>
<tr>
<td>Nanofiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated Drinking Water</td>
<td>Color, TOC, hardness, TDS, THMFP</td>
<td>Conlon (1985); Eriksson (1988); Cadotte et al. (1988); Dykes and Conlon (1989); Conlon and McClellan (1989); Watson and Hornburg (1989); Lange et al. (1989); Amy et al. (1990); Conlon et al. (1990); Tan and Amy (1991)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural chemicals</td>
<td></td>
<td>Taylor et al. (1989b); Duranceau et al. (1992)</td>
</tr>
<tr>
<td>Wastewater Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Pulping</td>
<td>Color, organics</td>
<td>Bindoff et al. (1987); Ikeda et al. (1988)</td>
</tr>
<tr>
<td>Process Wastewater</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Selected Wastewater Applications of Reverse Osmosis (continued).

<table>
<thead>
<tr>
<th>Application</th>
<th>Species Removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wastewater Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textile Mill Effluents</td>
<td>Hardness, color, organics</td>
<td>Simpson et al. (1987); Perry and Linder (1989); Gaeta and Fedele (1991)</td>
</tr>
<tr>
<td>Food Processing Effluents</td>
<td>COD</td>
<td>Ikeda et al. (1988); Cadotte et al. (1988); Anonymous (1988b)</td>
</tr>
<tr>
<td>Other Wastewaters</td>
<td>Cadmium, nickel</td>
<td>Bhattacharyya et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>Various organic pollutants</td>
<td>Williams et al. (1990); Rautenbach and Gröschl (1990b); Dyke and Bartels (1990); Bhattacharyya and Williams (1992a)</td>
</tr>
<tr>
<td></td>
<td>Uranium species</td>
<td>Chu et al. (1990)</td>
</tr>
</tbody>
</table>

COD: Chemical Oxygen Demand
TDS: Total Dissolved Solids
THMFP: Trihalomethane Formation Potential
TOC: Total Organic Carbon
Edwards and Schubert (1974) reviewed some of the early separation results of herbicides and pesticides with RO membranes. They also conducted studies with the herbicide 2,4-D and found separations were <51%. It was noted that solute adsorption could occur on the cellulose acetate membranes. Fang and Chian (1976) conducted studies on the separation of several polar organic compounds with various functional groups using cellulose acetate and several other types of membranes. This study found that the organic rejection varied considerably not only with solute but also with membrane type. Chian et al. (1975) reported high rejections (>99%) for several pesticides with cellulose acetate and a composite membrane; however, significant adsorption of the pesticides on the membranes was noted. Shuckrow et al. (1981) also listed cellulose acetate rejections of several different organics; rejections were poor to moderate (such as only 10% for methylene chloride, up to 73% for acenaphthene).

Several studies have compared organic rejections of cellulose acetate with other membranes, and many of these have indicated that aromatic polyamide and composite membranes usually have organic rejections greater than those of cellulose acetate membranes. Kurihara et al. (1981) listed several organic rejections of the Toray composite membrane PEC-1000 (polyfuran); most rejections were high, including 97% for acetone and 99% for phenol. Koyama et al. (1982) and Koyama et al. (1984) reported separation results for several polar organic solutes (alcohols, phenols, carboxylic acids, amines, and ketones) and various phenolic derivatives for a composite membrane. They found that the main factors affecting rejection included molecular weight, molecular branching, polarity, and degree of dissociation for ionizable compounds. Lynch et al. (1984) compared cellulose acetate and thin-film, composite membrane (FilmTec FT30, a crosslinked aromatic polyamide) separations with a wide variety of organic pollutants. The composite membrane rejections (greater than 90% for most of the organics studied) and water fluxes were substantially better than the cellulose acetate membrane; however, adsorption of some of the organics on the membranes was noted. Light (1981) studied dilute solutions of polynuclear aromatic hydrocarbons (PAHs), aromatic amines, and nitrosamines and found rejections of these compounds to be over 99% for polyamide membranes. Rickabaugh et al. (1986) also indicated polyamide membrane rejections of chlorinated hydrocarbons (>95%) were much greater than those of cellulose acetate membranes.

Bhattacharyya et al. (1987) and Bhattacharyya and Madadi (1988) investigated rejection and flux characteristics of FT30 membranes for separating various pollutants (PAHs, chlorophenols, nitrophenols) and found membrane rejections were high (>98%) for the organics under ionized conditions. They also found substantial water flux decline occurred even for dilute (< 50 mg/L) solutions of nonionized organics and observed significant organic adsorption on the membrane in some cases. Pusch et al. (1989) reported separation results for several different membranes (four composite and two asymmetric) for a variety of single and multicomponent organic solutions, including many organic pollutants. Rejections varied from only 25% up to >99% depending on the solute, but generally the composite membrane rejections were higher.

Williams et al. (1990) and Bhattacharyya and Williams (1992a) investigated FT30 membranes with ozonation as a feed pretreatment to remove chlorophenols and chloroethanes and reduce declines in water flux caused by the organics. Feed TOC rejections of ozonation intermediates were 80% to 96%, and overall removals of >99.8% were found for the model pollutant compound 2,4,6-trichlorophenol. Batch adsorption experiments and material balances indicated that nonionized chloro- and nitrophenols could strongly adsorb on the membrane. Rautenbach and Gröschl (1990a) also discussed that while high separations of organics could be achieved by RO.
membranes, significant decreases in water flux could occur even when only traces of organics were present. They indicated these flux declines could be caused by organic sorption on the membranes.

Saavedra et al. (1991) considered the use of polyamide membranes for the treatment of a phenol production waste stream; the stream contained organic acid salts and organic peroxides. While the organic salts were highly removed (>94%), the peroxides were poorly rejected. Studies with the peroxides indicated that some of these could cause significant water flux drop.

Bhattacharyya et al. (1991) reported separation results for a wastewater containing tributyl phosphate, metal salts (Na⁺, NO₃⁻, Fe³⁺, Al³⁺, etc.), and metal hydroxide precipitates. Tributyl phosphate and metals rejections were high (91% to 99%). Declines in water flux were caused by osmotic pressure of the metal salts, tributyl phosphate adsorption, and enhancement of precipitate fouling of the membrane caused by tributyl phosphate adsorption on the precipitate. Cheng et al. (1991) reported the effects of dilute solutions of the halocarbons CHCl₃, CHBr₃, and CCl₄ on the performance of DuPont cellulose acetate, polyamide, and thin-film composite membranes. The halocarbons were mostly poorly rejected (5% to 83%) by the three membranes; however, these caused water flux drops of up to 31%. The results indicated that water flux drop was caused by halocarbon adsorption.

RO Treatment of Industrial Wastewater

Electroplating and Metal-Finishing Process Wastewaters

In most cases, process wastewaters from the electroplating and metal-finishing industries must be treated to remove heavy metals before being discharged. Reverse osmosis is ideal for this wastewater treatment for many of these operations since it allows both recovery of the heavy metals and reuse of the product water in the process. The RO process has been used in the treatment and recovery of wastewater containing nickel, acid copper, zinc, copper cyanide, chromium, aluminum, and gold (Schrantz, 1975; Sato et al., 1977; Kamizawa et al., 1978; Cartwright, 1985).

McNulty et al. (1977) reported high rejections of nickel and total solids from electroplating bath rinse water. Spatz (1979) discussed the use of RO in the nickel plating industry to recover nickel from nickel plating bath rinse water. In this process the permeate was recycled as rinse water, and the concentrate was recycled back to the plating bath. This allowed 97% recovery of the rinse water, and nickel consumption was significantly reduced. Robison (1983) also discussed the use of a RO process to recover nickel from plating rinse water; recycle of the permeate and nickel concentrate resulted in substantial savings for the plating operation.

Imasu (1985) reported on the use of cellulose acetate and polyamide (FT30) membranes at three Japanese plating shops with nickel, chromium, and gold plating lines. Up to 80% water recoveries with high metal and TDS (>95%) rejections were possible, and the product water was recycled. The RO processes were found to be cost-effective in treating the wastewaters, and the compact nature of the RO system made it highly desirable to the customers because of space limitations.

Thorsen (1985) discussed the RO treatment of effluent from an electrolytic polishing process for aluminum products. The streams contained phosphoric acid and aluminum from rinse water. DDS HR-98 membranes allowed 96% to 98% acid recovery (up to an acid concentration of 20%) and produced permeate water suitable for reuse. The membranes appeared to be stable to the feed even at the low pH values (0.9 to 1.0) found at high recoveries.

Davis et al. (1987) discussed two case histories of heavy metal wastewater treatment using RO membranes. In the first case, spiral-wound polyamide membranes allowed 75% water recovery with TDS rejections of >99% for a heavy metal-containing wastewater. Scaling and fouling were
reduced by pretreatment and periodic cleaning. In the second case, rinse water effluents from a metal forming facility were treated. Polyamide membranes gave rejections over 99% for calcium, cadmium, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, and tungsten and up to 90% recovery of the effluent as purified water suitable for reuse in the plant was found to be possible. It was noted subsequent treatment to recover molybdenum for reuse in the facility was also possible. The RO system was determined to be a cost-effective alternative to evaporation.

Slater et al. (1987a) reported on the use of RO membranes to remove cadmium from metal processing wastewaters. The FT30 membranes used had cadmium rejections of >99.5% in most cases and produced a high quality product water suitable for reuse. Rejections of other metals (zinc, silver, copper, nickel, and tin) and overall conductivity were >97% even at water recoveries up to 75%, and water fluxes remained at reasonably high levels. It was concluded that the RO could be an efficient and cost-effective process for treatment of the wastewater.

Pulp and Paper Processing Wastewaters

The use of RO membranes in combination with other processes to treat wastewaters in the pulp and paper industry has also been investigated. Morris et al. (1972) and Wiley et al. (1978) conducted early studies with pulp and paper wastewaters. Glimenius (1980) and Olsen (1980) outlined the use of RO to concentrate spent sulphite liquor (SLL, which consists of lignosulfates and other organics as well as various inorganics) containing wastewater before it was sent to an evaporator, resulting in lower energy costs for the evaporator. Paulson and Spatz (1983) also detailed the use of RO and ultrafiltration/RO processes to concentrate SLL wastes before further treatment by evaporation. In the process RO membranes concentrated solids from less than 2% to 10%; it was noted that this preconcentration would greatly reduce evaporator costs because of reduced volume to be treated. High rejections of solids (>95%), BOD (88%), and COD (>96%) were reported for short-term tests. Ultrafiltration treatment prior to a high pressure RO membrane was reported to allow even further preconcentration prior to evaporation. It was pointed out that RO processes would also produce an excellent quality water for reuse in the pulping process. Chakravorty and Srivastava (1987) and Chakravorty (1989) also reported good separation results for an ultrafiltration/reverse osmosis process for pulp and paper mill effluents.

Jönsson and Wimmerstedt (1985) discussed the use of RO concentration prior to SLL evaporation, concentration of weak black liquor by RO, and the use of RO to treat bleach effluent; rejections of both organics and inorganics in these effluents were >90%. They also reported the use of PCI ZF99 tubular membranes to treat waste paper white water. For these membranes rejections of TDS (99.4%) and COD (>99.8%) were found to be good even at high water recoveries (up to 95%). Hart and Squires (1985) indicated ZF99 membranes gave high rejections of lignin, TOC, sugars, and color in wash waters, making the permeate suitable for reuse; however, periodic membrane cleanings were required to restore water flux of the membranes. Simpson and Groves (1983) and Ekengren et al. (1991) have reported some success in the use of membranes to treat bleach plant effluent. The ultrafiltration and RO processes used gave high removals of inorganics, COD, and chloroorganic compounds. Dorica et al. (1986) also studied the use of ultrafiltration and RO processes to minimize discharges of chlorinated organics and other pollutants in bleach plant effluents. Reverse osmosis membranes completely removed color and 95% to 99.8% of organics, chloride, and organic chlorine for water recoveries of 75% to 85%; feeds consisted of ultrafiltration filtrate of caustic extraction effluent and effluent from a chlorination stage.
Food Processing Wastewaters

Reverse osmosis also has been used to treat food processing wastewaters so that these could be discharged or recycled; in many cases it was indicated a concentrate stream rich in nutrients was produced. Hart and Squires (1985) discussed the use of ZF99 tubular membranes to concentrate slaughter house effluent rich in COD, and Gekas et al. (1985) also reported on the use of a RO system to treat meat processing wastewaters. Canepa et al. (1988) studied treatment of olive mills wastewater containing high total solids and COD with a combination ultrafiltration/RO process. For the RO membranes rejections of TDS were >99% and COD were 93% for water recoveries of 70%. The permeate was suitable for recycle. The use of an ultrafiltration/RO process to reduce effluents from olive canning operations and allow recycling of processing water has also been reported (Anonymous, 1988a). Mohr et al. (1989) discuss several uses of RO in wastewater treatment in the food industry, including for concentration of whey, fruit processing waters, and stillage waters.

Radioactive Processing Wastewaters

Because of high rejection of inorganic compounds, RO membranes have been studied for treatment of radioactive effluents. Ebra et al. (1987) described a treatment facility that included RO processes to remove low levels of radionuclides and hazardous chemicals prior to discharge. Hsiue et al. (1989) reported on the use of RO membranes to treat uranium conversion process effluent containing toxic, corrosive, and radioactive compounds. The FT30 membranes studied had rejections of uranium ≥99.5% for water recoveries up to 70%, and the results indicated that the treated effluent would meet regulatory discharge standards. Chu et al. (1990) used a three stage process consisting of nanofiltration, reverse osmosis, and precipitation to treat uranium effluents. The process removed both soluble and suspended uranium species; it was found that 95% uranium recovery was possible, and the treated effluent met environmental standards. The RO membranes (FT30) gave uranium rejections of >99%. Prabhakar et al. (1992) indicated cellulose acetate membranes could effectively remove 99% of uranium from effluents containing uranium nitrate when the uranium was complexed with EDTA. Garret (1990) also studied removal of uranium and other radioactive elements by RO membranes.

RO Treatment of Other Wastewaters

Reverse osmosis has also been applied to a variety of other wastewaters. Terril and Neufeld (1983) used RO membranes to remove contaminants (calcium, magnesium, zinc, sulfate, chloride, ammonia and others) in blast-furnace scrubber water, allowing recycle of the product water. Hart and Squires (1985) discussed the use of RO to treat coal mining drainage (containing mostly sodium salts); TDS removals from the permeate were high. Sinisgalli and McNutt (1986) described a process in which RO was integrated with other treatment systems to remove contaminants from a complex industrial wastewater; this wastewater contained contaminants from semiconductor manufacturing lines and plating baths as well as cooling tower blowdown and other facility wastewaters. The treatment process allowed recycle of the product water, reduced operating costs, and compliance with environmental regulations. Reverse osmosis has also been used to demineralize cooling tower blowdown in the power generation industry (Schutte et al., 1987; Bryant et al., 1987).

Bhattacharyya et al. (1984) used FT30 and DuPont B9 (polyamide) membranes to remove contaminants from biotreated coal-liquefaction wastewater. TDS rejections were >77%, and the membranes removed 94% to 98% of the organics and 100% of the color present. Siler and Bhattacharyya (1985) reported on the use of RO membranes to treat oil shale retorting wastewaters.
containing organics (aliphatic acids and phenolics), inorganics (NH₃, S²⁻, Cl⁻, alkalinity), color, odor, oils, and suspended solids. Rejections with and without various pretreatment by activated carbon, filtration, etc. (which greatly affected flux) ranged from 60% to 94% for conductivity and 75% to 88% for TOC. McCray and Ray (1987) used a RO system to treat process condensate wastewater from a synfuel process which contained high concentrations of organics (phenols, oils and greases, carboxylic acids, cyclic hydrocarbons, etc.) and inorganics such as ammonia, sulfides, carbonates, cyanides, and heavy metals. Studies at high pH indicated contaminants were rejected >95% and fluxes could be maintained at acceptable levels even for water recoveries up to 80%. Krug and Attard (1990) conducted studies using ultrafiltration followed by RO for the treatment of oily wastewater; oil removals greater than 96% were found.

Lyandres et al. (1989) used RO membranes (FT30 and PEC-1000) to treat evaporator condensates from a hazardous waste treatment facility; the condensate contained light organic compounds (mostly carboxylic acids and amines) and small amounts of inorganics. Both membranes removed more than 98% of TOC. Hays et al. (1988) and Davis et al. (1990) have discussed the use of RO membranes to remove and recover ammonium nitrate from manufacturing and explosive manufacturing effluents; ammonium nitrate removals of >87% were found. Reverse osmosis membranes have also been used with some success in the treatment of textile dyehouse effluents (Treffry-Goatly et al., 1983; Slater et al., 1987b; Calabro et al., 1990; Gaeta and Fedele, 1991). Reverse osmosis allows recovery of dyes and auxiliary chemicals and recycle of the product water as rinse water, minimizing discharge of pollutants.

RO Treatment of Contaminated Water Supplies

Leachates

Several studies have been conducted on the treatment of landfill leachates with RO processes. Chian and De Walle (1977) found RO membranes could be used to remove >91% of TOC from sanitary landfill leachate. Slater et al. (1983b) discussed the use of tubular cellulose acetate membranes to treat industrial landfill leachates and found TDS removals of 98% and COD removals of 68%. Water recoveries of up to 75% were possible without significant fouling. McArdle et al. (1987) indicated that RO membranes could be used as a treatment technology for leachate from hazardous waste land disposal facilities. Rautenbach and Ingo (1988) discussed treatment problems of landfill drainage at high water recovery rates. Kinman and Nutini (1990) also described RO treatment of landfill leachate; removals of 94.5% alkalinity, 97% COD, 97% total solids, 92.1% volatile solids, and 96.6% ammonia were reported. Stürken et al. (1991) and Peters (1991) also indicated RO membranes could remove 98% of COD, TOC, and ammonium ions, 96% of nitrate, and heavy metals. Bhattacharyya and Kothari (1991) used FT30 membranes to treat soil-wash leachates so that the treated water could be recycled back to the soil-washing step. The leachate contained heavy metals and organic contaminants. TOC rejections as high as 80-85% and heavy metal (Pb, Zn, Ni, Cu) rejections of 94% to 98% were found. However, water flux decreases of up to 33% were noted. The effects of addition of EDTA or surfactant and feed preozonation were also investigated; feed preozonation substantially improved membrane water flux. Specific organic rejections included >98% for pentachlorophenol and 2,4-dinitrophenol, >97% for ethylbenzene, >81% for xylene, and >90% for chloroaniline. Lepore and Ahlert (1991) reported the treatment of landfill leachates containing organic acids; they found good separations of volatile fatty acids, and TDS was removed sufficiently to allow discharge of the product water.
Contaminated Drinking Water

The ability of RO membranes to remove both inorganic and organic compounds have made these attractive for the treatment of contaminated drinking water supplies (AWWA, 1992). Reverse osmosis processes can simultaneously remove hardness, color, many kinds of bacteria and viruses, and organic contaminants such as agricultural chemicals and trihalomethane precursors. Eisenberg and Middlebrooks (1986) reviewed RO treatment of drinking water sources, and they indicated RO could successfully remove a wide variety of contaminants. Chian et al. (1975) and Johnston and Lim (1978) studied several agricultural chemicals which can contaminate water supplies and found removals were good; however, these adsorbed on the membranes studied. Regunathan et al. (1983) reported good removals of the pesticides endrin and methoxychlor as well as trihalomethanes (THMs) with an RO-adsorption system. Nusbaum and Riedinger (1980), Odegaard and Koottatep (1982), and Bhattacharyya and Williams (1992a) reported that humic and fulvic materials, which are THM precursors, were highly removed by RO membranes. Clair et al. (1991) also found excellent removals (>95%) of dissolved organic carbon from natural waters using FT30 membranes.

Sorg et al. (1980) showed that a RO system could effectively remove radium from contaminated water. Sorg and Love (1984) conducted studies with actual groundwater in which only a few of the pollutants being studied were spiked; several different commercial membranes were studied. Most inorganics were highly (>90%) rejected while organic rejection depended upon the organic and membrane studied. Bai et al. (1987) studied removal of several agricultural chemicals from groundwater using several different membranes. Rejections ranged from 0% to >94% for the different compounds and membranes studied; pilot plant experiments indicated water fluxes could be maintained over long terms with periodic cleaning. Fronk (1987) investigated RO removal of over twenty VOCs and pesticides using several different RO membranes. Average organic removals were 80%. The study indicated that RO could be used to effectively remove both inorganics and organics from drinking water supplies. Taylor et al. (1987) found that RO membranes could be used to remove 96% of DOC, 97% of color, 97% of trihalomethane formation potential (THMF), and 96% of total hardness. Tan and Sudak (1992) examined several RO membranes and found all were capable of acceptably removing color from groundwater even over long operating periods.

Municipal Wastewater

The application of RO membranes to the treatment of municipal wastewater has also had some success. Reverse osmosis can remove dissolved solids which cannot be removed by biological or other conventional municipal treatment processes. In addition, RO membranes can also lower organics, color, and nitrate levels. However, extensive pretreatment and periodic cleaning are usually needed to maintain acceptable membrane water fluxes. Early studies (Cruver, 1976; Fang and Chian, 1976; Lim and Johnston, 1976) showed that high removals of TDS and moderate removals of organics could be achieved. Tsuge and Mori (1977) showed that tubular membranes (with a substantial pretreatment system) could remove both inorganics and organics from municipal secondary effluent and produce water meeting drinking water standards. Stenstrom et al. (1982) studied municipal wastewater treatment over a 3 year period using tubular cellulose acetate membranes. TDS rejections were 81%, and TOC rejections were >94%, making the permeate suitable for reuse. However, feed pretreatment was necessary to maintain high water flux levels.

Richardson and Argo (1977), Allen and Elser (1979), Argo and Montes (1979), Nusbaum and Argo (1984), and Reinhard et al. (1986) have discussed municipal wastewater treatment at a large scale plant (Water Factory 21, Orange County, California). The feed to the plant consisted of
secondary effluent, and the process was composed of a variety of treatment systems, including RO membranes (several different types) with a 5 MGD capacity. The process reduced TDS and organics to levels that allowed the effluent to be injected into groundwater aquifers used for water supplies. Suzuki and Minami (1991) reported studies on use of several RO membranes to treat secondary effluent containing various salts and dissolved organic materials. TDS rejections of up to 99% and TOC rejections as high as 90% were found possible, and fecal coliform group rejections were >99.9%. Losses in water flux over time were noted but could be partially restored by periodic cleaning.

Nanofiltration Applications

Nanofiltration (or "loose RO") membranes, which have high water fluxes at low pressures, are a recent development that have made possible new applications in wastewater treatment. Nanofiltration membranes are often charged (usually negatively-charged), and, as a result, ion repulsion is the major factor in determining salt rejection. For example, more highly charged ions such as SO_4^{2-} are rejected by most nanofiltration membranes to a greater extent than monovalent ions such as Cl-. These membranes also reject organic compounds with molecular weights above 200 to 500. These properties have made possible some interesting new applications in wastewater treatment, such as selective separation and recovery of pollutants that have charge differences, separation of hazardous organics from monovalent salt solutions, and membrane softening to reduce hardness and trihalomethane precursors in drinking water sources (Eriksson, 1988; Cadotte et al., 1988; Williams et al., 1992).

Nanofiltration of Contaminated Drinking Water Supplies

Nanofiltration membranes, although a relatively recent development, have attracted a great deal of attention for use in water softening and removal of various contaminants from drinking water sources. Nanofiltration (NF) processes can reduce or remove TDS, hardness, color, agricultural chemicals, and high molecular weight humic and fulvic materials (which can form trihalomethanes when chlorinated). In addition, NF membranes typically have much higher water fluxes at low pressures when compared with traditional RO membranes used for this application.

Conlon (1985) reported that FilmTec NF50 membranes could effectively remove color (96%) and TOC (84%), reduce hardness and TDS, and lower trihalomethane formation potential (THMFP) to below regulatory levels. Eriksson (1988) and Cadotte et al. (1988) also indicated that NF membranes (such as FilmTec NF40, NF50, and NF70) could be used to reduce TDS, hardness, color, and organics. Dykes and Conlon (1989), Conlon and McClellan (1989), Watson and Hornburg (1989), and Conlon et al. (1990) have also identified NF as an emerging technology for compliance with THM regulations and for control of TDS, TOC, color, and THM precursors.

Clifford et al. (1988) discussed the use of NF70 membranes for contaminated groundwater treatment. Removals included 91% for radium-226 and 87% for TDS. Taylor et al. (1989a) reported that NF70 membranes could allow control of THM formation, DOC, and TDS and produce a high quality product water from an organic contaminated groundwater; they indicated costs of a NF process would be competitive with conventional treatment processes which do not control THMFP. Lange et al. (1989) also suggested that NF treatment would be a reliable method of meeting existing and future THM limits compared to chemical treatment alternatives.

Amy et al. (1990) used NF70 membranes to remove dissolved organic matter from both groundwater (recharged from secondary effluent) and surface water in order to reduce THM precursors; they found that the process was effective in reducing the organics as well as conductivity.
in both water sources. Tan and Amy (1991) showed that NF membranes could remove >88% of color, 51% of TOC, 46% of TDS, and 79% of THMFP from a contaminated water supply.

Duranceau et al. (1992) and Taylor et al. (1989b) have reported on the use of NF70 membrane separation of several agricultural chemicals spiked in groundwater. Ethylene dibromide and dibromochloropropane removals averaged 0% and 32%, respectively, while the remaining organics (chlordane, heptachlor, methoxychlor, and alachlor) were 100% removed. Rejections of TDS were 85% and THMFP were 95%. However, it was also indicated that some of the organics adsorbed on the membrane.

Nanofiltration of Wastewater

Nanofiltration has also been used to remove both organics and inorganics in various wastewaters. Bindoff et al. (1987) reported the use of NF membranes to remove color-causing compounds from effluent containing lignins and high salt concentrations in a wood pulping process. Color removals were >98% at water recoveries up to 95% while the inorganics were poorly rejected, allowing the use of low operating pressures (since $\Delta \pi$ was small). Ikeda et al. (1988) indicated NF could give high separations of color-causing compounds such as lignin sulphonates in paper pulping wastewaters. Afonso et al. (1992) found NF removal (>95%) of chlorinated organic compounds from alkaline pulp and paper bleaching effluents with high water fluxes. Simpson et al. (1987) reported the use of NF membranes to remove hardness and organics in textile mill effluents; Gaeta and Fedele (1991) also indicated high water recoveries (up to 90%) from textile dye house effluent could be achieved with NF membranes. Perry and Linder (1989) discussed the recovery of low molecular weight dyes from high salt concentration effluent. Ikeda et al. (1988) and Cadotte et al. (1988) reported the use of NF membranes in the treatment of food processing wastewaters. Some specific uses included the desalting of whey and the reduction of high BOD and nitrate levels in potato processing waters (Anonymous, 1988b).

Bhattacharyya et al. (1989) used NF40 membranes to selectively separate mixtures of cadmium and nickel. Williams et al. (1990) and Bhattacharyya and Williams (1992a) examined NF40 membranes with and without pretreatment by feed preozonation to study removal of various chlorophenols and chloroethanes. TOC rejections up to 90% were possible with ozonation pretreatment. Rautenbach and Gröschl (1990b) also discussed the separation results of several organics (ranging from methanol to ethylene glycol) by various NF membranes. Chu et al. (1990) detailed the use of NF in a process for treating uranium wastewater; NF40 uranium rejections were 97% to 99.9%. Dyke and Bartels (1990) discussed the use of NF membranes to replace activated carbon filters for the removal of organics from offshore produced water containing residual oils. The produced waters contained ~1000 mg/L soluble organics (mostly carboxylic acids) and high inorganic concentrations (~15,000 mg/L Na⁺ and ~25,000 mg/L Cl⁻ as well as other dissolved ions). Organic rejections were suitable to meet discharge standards while inorganic rejections were low (<20%), allowing operation at low pressures.
REFERENCES AND OTHER ARTICLES OF INTEREST

Allen, P., and Elser, G., "They Said it Couldn't be Done - the Orange County, California Experience", Desalination, 30, 23 (1979).

Applegate, L., "Membrane Separation Processes", Chemical Engineering, 64 (June 11, 1984).

A Review of Wastewater Treatment by Reverse Osmosis

Bhattacharyya, D., Back, S., and Kermode, R., "Prediction of Concentration Polarization and Flux
A Review of Wastewater Treatment by Reverse Osmosis

Bryant, T., Stuart, J., Fergus, I., and Lesan, R., "The Use of Reverse Osmosis as a 35,600 m³/day Concentrator in the Wastewater Management Scheme at 4640 MW Bayswater/Liddel Power Station Complex - Australia", Desalination, 67, 327 (1987).

Burghoff, H., Lee, K., and Pusch, W., "Characterization of Transport Across Cellulose Acetate
A Review of Wastewater Treatment by Reverse Osmosis

Chu, M., Tung, C., and Shieh, M., "A Study on Triple-Membrane-Separator (TMS) Process to Treat
A Review of Wastewater Treatment by Reverse Osmosis

Doshi, M., "Modeling of Reverse Osmosis Membrane Devices", in Reverse Osmosis Technology, B.
A Review of Wastewater Treatment by Reverse Osmosis

Edwards, V., and Schubert, P., "Removal of 2,4-D and other Persistent Organic Molecules from Water Supplies by Reverse Osmosis", *Journal AWWA*, 610 (October 1974).

A Review of Wastewater Treatment by Reverse Osmosis

Hance, D., "Polymeric Membranes: Pore Structure Characteristics by Gas Adsorption and
A Review of Wastewater Treatment by Reverse Osmosis

A Review of Wastewater Treatment by Reverse Osmosis

Koyama, K., Nishi, T., Hashida, I., and Nishimura, M., "The Rejection of Polar Organic Solutes in Aqueous Solution by an Interpolymer Anionic Composite Reverse Osmosis Membrane", *Journal of*
A Review of Wastewater Treatment by Reverse Osmosis

A Review of Wastewater Treatment by Reverse Osmosis

Petersen, R., and Cadotte, J., "Thin Film Composite Reverse Osmosis Membranes", in Handbook of
A Review of Wastewater Treatment by Reverse Osmosis

A Review of Wastewater Treatment by Reverse Osmosis

A Review of Wastewater Treatment by Reverse Osmosis

Plating and Surface Finishing (July 1979).

